一、精细调整你的查询
1包含详细信息:在你的查询中加入具体信息,这样GPT能够给出更相关的回答。
2设置角色:告诉GPT扮演一个特定的角色,比如教授或编辑,这有助于获取专业化的回答。
3使用分隔符:通过使用例如三重反引号或XML标签等,来清晰标记输入的不同部分。
4明确步骤:对于复杂任务,把它分解成一系列清晰的步骤,这样GPT会更容易理解。
5提供示例:在合适的情况下,提供示例可以让GPT更清楚地了解你的需求。
6设置输出长度:告诉GPT你需要的回答长度,比如是一句话还是一段文字。
例1:
-Prompt:“告诉我一个故事。”
-优化后:请以一个童话作家的身份,告诉我一个以中世纪为背景、关于一位骑士和一条龙的冒险故事,你可以先给我讲这个故事的背景、再讲故事主人公的介绍、最后讲故事本身。以Markdown格式,不低于800字输出。
二、使用参考资料
GPT可能会无意中编造信息,特别是在涉及复杂话题时。提供可信的参考资料,可以帮助GPT生成更准确和少错误的答案。
例2:
-Prompt:“讲述拿破仑的历史。”
-优化后:“根据史蒂芬·克拉克的书《拿破仑:人生、立场和遗产》,讲述拿破仑的历史。”
三、将任务分解
处理复杂任务时,将其分解为更简单的子任务通常更有效。这样不仅可以降低错误率,还可以创建一个工作流,其中每个任务建立在前一个任务的结果上。
例3:
Prompt:我想学习编程。
-优化后:
1哪些编程语言适合初学者?
2为学习Python,推荐一些在线课程。
3Python基础知识学习后,推荐一些进阶项目。
四、让GPT“思考”
与人一样,GPT也需要时间来处理信息。通过引导GPT进行一系列的推理,而不是立即给出答案,可以帮助它更可靠地得出结论。
例4
-Prompt:“为什么天空是蓝色的?”
-让GPT“思考”的查询:“当我们看天空时,我们通常看到蓝色。这是因为大气和光的相互作用。请从光的散射和大气的组成两个方面,解释为什么天空在大多数情况下呈现蓝色。”
五、利用外部工具
结合其他工具的使用,可以提升GPT的能力。例如,当需要执行复杂数学计算时,可以使用专业工具而不是依赖GPT。
例 5:天气查询应用
如果你正在开发一个可以告诉用户当前天气的应用,你可能想要整合一个天气API来获得实时天气数据,而不是依靠GPT模型的预测能力。
六、用测试确认改善
要提高性能,需要看到真实的数字。单独改一点可能在一两个例子里有效,但总体表现可能变差。所以,要用一系列的测试检查是否真的有所改善。
一个好办法是用“标准答案”来对比模型的输出:假如我们知道一个问题的完美答案应该有哪些内容,我们就可以检查模型回答里包含了多少必要的内容。
原文地址:https://platform.openai.com/docs/guides/gpt-best-practices/strategy-test-changes-systematically